DOI: http://dx.doi.org/10.18782/2320-7051.5653

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **5 (4):** 1089-1096 (2017)

Research Article

Studies on the Effect of Blending of Jamun Juice and Guava Juice on Sensory Quality and Storage

Durgam Sridhar^{*}, Potharaju Prashanth, Matta Raj Kumar and Gadde Jyothi

Department of Horticulture, Fruit Science, College of Horticulture, Rajendranagar,

Dr. YSRHU., Hyderabad - 500030, Telangana, India *Corresponding Author E-mail: durgamsridhar66@gmail.com Received: 3.07.2017 | Revised: 11.07.2017 | Accepted: 12.07.2017

ABSTRACT

An experiment was conducted to investigate sensory quality and storage of jamun juice blended with guava juice at ambient condition during 2013-2014 in postharvest technology laboratory at College of Horticulture, Mojerla, Mahabubnagar District, TelanganaState.The investigation comprised of six treatments i.e. 100 % Jamun juice + 500 ppm Sodium benzoate (T_1),90 % Jamun juice + 10 % Guava juice + 500 ppm Sodium benzoate(T_2),80 % Jamun juice + 20 % Guava juice + 500 ppm Sodium benzoate(T_3),70 % Jamun juice + 30 % Guava juice + 500 ppm Sodium benzoate(T_4),60 % Jamun juice + 40 % Guava juice + 500 ppm Sodium benzoate(T_5),50 % Jamun juice + 50 % Guava juice + 500 ppm Sodium benzoate(T_6) replicated four times in completely randomized design with factorial concept. The results revealed that, the Total Soluble solids, pH, ascorbic acid, total sugars increases and titrable acidity, anthocyanin content and total phenols gradually decreased during the storage period. The highest overall acceptability was recorded in the treatment T_3 (4.46). Among the treatments the highest total sugars was observed in T_3 (7.61) and lowest in T_6 (6.18). The highest anthocyanin content was recorded in T_1 (48.72) and lowest in T_6 (2.76).

Key words: Jamun juice, Guava juice, Sodium benzoate, Anthocyanin, Phenols

INTRODUCTION

Jamun (*Syzygiumcumini* L. Skeels) is an evergreen tropical tree belongs to the family Myrtaceae. According to Hindu tradition, Rama subsisted on the fruit in the forest for 14 years during his exile from Ayodhya. Because of this, many Hindus regard jamun as a 'Fruit of the Gods'. It has recently attained major importance as an arid zone Horticultural crop because of its hardy nature and high yielding potential. It is known by several names, such as black plum, Indian black berry and java plum. The world production of jamun is estimated at 13.5 million tonnes out of which 15.4 per cent is contributed by India. In the world, India ranks second in production of jamun. Maharashtra state is the largest producer followed by Uttar Pradesh, Tamil Nadu, Gujarat, Assam and others¹.

Cite this article: Sridhar, D., Prashanth, P., Kumar, M.R. and Jyothi, G., Studies on the Effect of Blending of Jamun Juice and Guava Juice on Sensory Quality and Storage, *Int. J. Pure App. Biosci.* **5**(4): 1089-1096 (2017). doi: http://dx.doi.org/10.18782/2320-7051.5653

The jamun fruits possess several medicinal and nutritive properties. The unripe fruit juice is stomachic, carminative and diuretic in nature and has cooling and digestive properties⁸. The seeds contain about 19 per cent tannins. Powdered seeds are used to treat against diarrhoea, dysentery and for reducing the sugars in the urine. It is also used as lotion for curing ring worm⁴ and against bleeding piles, correcting liver disorders, jaundice, kidney stone, asthma, blood pressure⁷.

Guava (Psidiumguajava L) fruit is considered as one of the delicious and luscious fruit. It is rich source of vitamin C and also contains appreciable amount of minerals, vitamins, proteins and sugars. The fruit is one the richest source of vitamin C content. It contains four times more vitamin C than some citrus fruits. The guava contains very little vitamin A or carotene. However, it is fairly rich in most other mineral nutrients. It has very pleasant flavour and taste with good nutritional quality but fruit pulp is not attractive in colour. On the other hand jamun pulp has attractive colour and also the richest source of vitamin C and other antioxidants. Therefore, if pulps of both fruits are blended, there is a possibility to obtain a new beverage of attractive colour, pleasant flavour, highly nutritional, refreshing and medicinal properties along with good organoleptic value and storage stability.

Sometimes two or more juices are mixed to yield a well-balanced, rightly flavoured, coloured, highly palatable and refreshing drink. Juices are blended so as to utilize a too sweet, a bitter fruit, too acidic or tart fruits, blend and insipid tasting fruits and strongly flavoured fruits. The blending of fruit drinks could be an economic requisite to utilize profitably some fruit varieties for processing and developing a new product.

MATERIALS AND METHODS

The locally available jamun fruits were collected from a single tree, located in farmer field, near to College of Horticulture, Mojerla, Mahabubnagar District. Unblemished, riped and good quality jamun fruits were washed thoroughly with clean tap water, hand crushed,

Copyright © August, 2017; IJPAB

destined and pulp was heated up to 70°C for two minutes. It is useful for easy separation of the seeds from pulp. The juice was extracted by squeezing pulp and then straining through muslin cloth. Then the juice was heated till it reaches 90°C temperatures.

Guava fruits were collected from orchards located at Shadnagar, Mahabubnagar District. Good quality guava fruits were washed thoroughly with tap water and cut into pieces. Then grind the pieces finely with water (1 kg fruits: 1lit water) in a grinder. The juice was extracted by filtering through muslin cloth.

In case of treatment T_1 (100 % Jamun juice), only jamun juice preserved and added with 500 ppm sodium benzoate, that means 100 mg of sodium benzoate added to the 200 ml of juice. In case of T_2 to T_6 , the jamun juice of 90 %, 80 %, 70 %, 60 % and 50 % was taken and mixed with guava juice at 10 %, 20 %, 30 %, 40 % and 50 % respectively. All these treatments were added with 500 ppm sodium benzoate as preservative. After imposition of treatments, the blended juice were filled into clean, sterilized crown bottles of 200 ml capacity and sealed with crown caps by using crown corking machine and then stored at ambient condition for further observations

The study was carried for three months and analysis was carried in an interval of 15 days, all the treatments were replicated four times in completely randomized design with factorial concept. Total soluble solids (TSS) were determined with a digital refractometer by placing a drop of the filtered juice in the prism of the refractometer and results were recorded. The pH of the products was determined by using pH meter.Ascorbic acid was estimated by Indophenol method, total sugars by Lane and Eynon method and adopting the acidity was estimated by procedure described by Ranganna¹³. Anthocyanins were estimated by adopting the procedure bisulphate bleaching method and phenols as per the FolinCiocalteau Reagent method². For estimating the microbial population in different sample products,

Sridhar *et al*

dilution plate method was followed³. Organoleptic evaluation was done by a panel of 5 members using a Hedonic scale¹². It was taken based on the organoleptic scores given by panelists. Interpretation of the data was carried out in accordance with Panse and Sukhatme¹¹.

RESULTS AND DISCUSSION Total soluble solids:

Increasing trend of total soluble solids content was noticed during storage period presented table in Table 1. The initial variation in TSS was found in different treatments which are attributed to processing variation. Significant difference was found in TSS of different recipes of jamun and guava blended juice. Among treatments the highestTSS recordedin T_3 (10.07°B) followed by T_1 (7.46°B) and lowest was recorded in T₆ (5.91°B) compared to all other treatments. This might be due to variation in composition of recipe. Increase of TSS during storage might be due to conversion of polysaccharides to simple sugars. Similar observations were reported by Tripathi*et* al^{17} . in pineapple and guava blended RTS beverage, Nidhi*et al^{10}*, in bael and guava beverage.

pH:

There was significant difference in pH among different days of storage period. During the storage period, the pH gradually increased from initial day to end of storage period. Among treatments the highest pH was recorded in treatment $T_6(3.66)$ followed by T_5 (2.93). This might be due to variation in composition of recipes. Significantly increase of pH during storage was attributed to the simultaneous decrease in titrable acidity of recipes (Table 2).

Ascorbic acid:

The data in the Fig 1 revealed that, there was significant difference in ascorbic acid among different days of storage period. During the storage period, the ascorbic acid gradually decreased from initial day to end of the storage period. Among treatments with respect to the ascorbic acid and highest was recorded in treatment T_3 (17.89 mg/100 ml) followed by T_1 (17.57 mg/100 ml). This might be due to catalytic activity of enzymes. The loss of

ascorbic acid during storage was probably due to the fact that ascorbic acid being sensitive to O_2 , light and heat was easily oxidized in presence of O_2 by enzymatic and nonenzymatic catalysts, Map Son⁹.

Total sugars:

The data showed in the table 3 indicates that, there were significant differences among treatments with respect to the total sugars and highest was recorded in treatment T_1 (7.61) followed by T_2 (7.37) and lowest was recorded in T_6 (6.18). This might be due to the acid hydrolysis of polysaccharides to mono and oligosaccharides. Similar results have been reported by Sharma *et al*¹⁶., in hill lemon RTS beverage and Ilamaran and Amutha⁶ in banana and sapota beverages.

Titrable acidity:

The titrable acidity represented in Fig 2 recorded significant differences among treatments with respect to titrable acidity and highest was recorded in treatment T_1 (0.43) followed by T_2 (0.38) and lowest was recorded in T_5 (0.21). During the storage period, the titrable acidity gradually decreased from initial day to end of storage period might be due to conversion of acids into salts and sugars by enzymes particularly invertase. Similar observations were noticed by Gajanana⁵.

Anthocyanins:

The anthocyanin content gradually decreased during the storage period among treatments with respect to anthocyanins and highest was recorded in treatment T_1 (48.72 mg/100 ml) followed by T₂ (48.34 mg/100 ml)and lowest was recorded in T₆ (46.77 mg/100 ml). This might be due to slow degradation of anthocyanins, which maintained stability compared to other treatments, where different ratios of jamun and guava juice blends. Moreover, several factors are believed to affect the stability of anthocynin in fruits and vegetables during preparation, processing and storage which include pH, temperature, light, oxygen, metal, ions, enzymes and sugars. Anthocyanins were decreased during storage, this might be due to the hydrolysis of anthocyanins at higher temperature for longer time, $Rhim^{14}$ (Fig 3).

Sridhar *et al* Total phenols:

The total phenols represented in Fig 4,there were significant differences among treatments with respect to total phenols and highest was recorded in treatment T_3 (336.14 mg/100 ml) followed by T_2 (335.85 mg/100 ml).) and lowest was recorded in T_6 (329.71 mg/100 ml). The decrease in phenols during storage of jamun and guava juice blends might be due to their oxidation and condensation into brown pigments. Similar pattern was observed by Sarolia and Mukherjee¹⁵ in lime juice and Upale¹⁸ in storage of jamun juice.

Microbial count:

There was significant difference in microbial count among different days of storage period. During the storage period, the microbial count gradually increased from initial day to end of storage period. There was significant difference in microbial count among different days of storage period. During the storage period, the microbial count gradually increased from initial day to end of storage period. Significantly lowest microbial count was recorded at initial day (2.38 cfu/ml) and a highest microbial count was recorded during 90 days of (2.93 cfu/ml) storage period. It was found to increase marginally during the storage period upto three months storage. But, such marginal increase did not affect the product (Table 4).

SENSORY EVALUATION

There were significant differences among treatments with respect to appearance, aroma and flavour, taste and overall acceptability and highest was recorded in T_3 respectively (4.26), (4.33), (4.34), (4.46). Based on the organoleptic evaluation the treatment T_3 has scored highest acceptability compared to the other treatments, which might be due to the appropriate maintenance of all chemical constituents, better consistency, sugar acid ratios and lowest microbial count (Table 5).

Shelf life (Days):

Shelf life of the treatment was considered scores obtained based on the during organoleptic evaluation by panelists. As the overall acceptability of the all treatments is more than 3, they were fairly acceptable at 90 days of storage period. However, treatment T_3 - 80 % Jamun juice + 20 % Guava juice + 500 Sodium benzoatescored ppm highest acceptability and was evaluated as best treatments. Further, investigation is required to know the exact days of shelf life as influenced by the treatments.

			uniting u	aring stor	age periou			
Treatments	Days after storage							Moon
Treatments	0	15	30	45	60	75	90	Mean
T ₁	6.86	7.03	7.23	7.50	7.66	7.86	8.06	7.46 ^b
T ₂	6.53	6.73	7.00	7.23	7.50	7.73	7.93	7.23 ^c
T ₃	9.56	9.70	9.96	10.13	10.23	10.40	10.53	10.07 ^a
T_4	6.30	6.46	6.63	6.83	7.10	7.30	7.46	6.87 ^d
T ₅	5.63	5.76	5.93	6.16	6.33	6.53	6.80	6.16 ^e
T6	5.26	5.46	5.66	5.93	6.16	6.36	6.56	5.91 ^f
Mean	6.69 ^g	6.86 ^f	7.07 ^e	7.30 ^d	7.50 ^c	7.70 ^b	7.89 ^a	
		F-test	S.I	Em±	CD at (0.05)		
For treatments (T)			**		0.027		0.076	
For days (D)			**		0.029		0.083	
For $T \times D$			NS		0.072		-	

 Table 1: Changes in total soluble (°Brix) solids of jamun and guava juice blends as influenced by different treatments during storage period

**significant at p = 0.01 level of significance; NS-Non significant; Figures with same alphabet did not differ significantly

Sridhar *et al*

Int. J. Pure App. Biosci. 5 (4): 1089-1096 (2017)

 Table 2: Changes in pH of jamun and guava juice blends as influenced by different treatments during storage period

			50014	se periou				
Treatments	Days after storage							Maan
reatinents	0	15	30	45	60	75	90	Mean
T ₁	3.43	3.45	3.48	3.51	3.54	3.56	3.59	3.51 ^d
T_2	3.52	3.54	3.57	3.61	3.64	3.66	3.69	3.60 ^c
T ₃	3.54	3.56	3.58	3.62	3.65	3.67	3.70	3.62 ^{bc}
T_4	3.55	3.57	3.60	3.64	3.67	3.69	3.71	3.63 ^{ab}
T ₅	2.85	2.87	2.90	2.93	2.96	2.99	3.01	2.93 ^e
T ₆	3.58	3.61	3.64	3.66	3.69	3.72	3.75	3.66 ^a
Mean	3.41 ^f	3.43 ^{ef}	3.46 ^d	3.49 ^c	3.52 ^b	3.55 ^a	3.57 ^a	
	F-test				S.Em±			CD at
(0.05)								
For treatments (T)			**		0.004		0.013	
For days	For days (D) **			0.005		0.0)14	
For T >	For $T \times D$ N		NS		0.012		-	

**significant at p = 0.01 level of significance; NS-Non significant; Figures with same alphabet did not differ significantly

Table 3: Changes in total sugars (%) of jamun and guava juice blends as influenced by different
treatments during storage period

treatments during storage period								
Treatments	Days after storage							Mean
Treatments	0	15	30	45	60	75	90	Wiean
T_1	7.28	7.30	7.34	7.37	7.40	7.43	7.45	7.37 ^b
T_2	6.93	6.95	6.99	7.02	7.05	7.07	7.09	7.02 ^c
T ₃	7.51	7.55	7.58	7.61	7.64	7.67	7.69	7.61 ^a
T_4	6.39	6.41	6.44	6.48	6.51	6.53	6.55	6.47 ^d
T ₅	6.18	6.21	6.24	6.27	6.32	6.34	6.36	6.27 ^e
T ₆	6.09	6.12	6.15	6.19	6.22	6.24	6.26	6.18 ^f
Mean	6.73 ^{ef}	6.76^{def}	6.79 ^{de}	6.82 ^{bcd}	6.86 ^{abc}	6.88 ^{ab}	6.90 ^a	
	· · ·			F-test S.Em±		±		CD at
	(0.05)							
For treatments (T)			**		0.017		0.049	
For days (D)			**		0.018		0.053	
For $T \times D$			NS		0.046		-	

**significant at p = 0.01 level of significance; NS-Non significant; Figures with same alphabet did not differ significantly

Table 4: Changes in microbial count (cfu/ml) of jamun and guava juice blends as influenced by different treatments during storage period

		, , , , , , , , , , , , , , , , , , ,				
Tuesdayserte	$(No. \times 10^5 \text{ CFU/ml})$					
Treatments	Initial	90 DAS	Mean			
T_1	2.33	2.88	2.60 ^b			
T_2	2.38	2.93	2.65 ^c			
T ₃	2.21	2.76	2.48 ^a			
T_4	2.43	2.98	2.70^{d}			
T_5	2.46	3.01	2.73 ^e			
T ₆	2.49	3.04	2.76 ^f			
Mean	2.38 ^a	2.93 ^b				
	F-test	S.Em±	CD at (0.05)			
For treatments (T)	**	0.006	0.017			
For days (D)	**	0.003	0.010			
For $T \times D$	NS	0.008				

**significant at p = 0.01 level of significance; NS-Non significant; Figures with same alphabet did not differ significantly

Int. J. Pure App. Biosci. 5 (4): 1089-1096 (2017)

Table 5: Changes in organoleptic characteristics at 90 days of storage of jamun and guava juice blends as
influenced by different treatments

Treatments	Appearance	Aroma and flavour	Taste	Overall acceptability
T ₁	4.23 ^{ab}	4.26 ^{bc}	4.26 ^b	4.36 ^b
T ₂	4.12 ^b	4.23 ^c	4.24 ^b	4.23 ^c
T ₃	4.26 ^a	4.33 ^a	4.34 ^a	4.46 ^a
T ₄	3.84 ^c	3.76 ^d	3.82 ^c	3.81 ^d
T ₅	3.69 ^d	3.37 ^e	3.72 ^d	3.74 ^e
T ₆	3.65 ^d	3.29 ^f	3.58 ^e	3.41 ^f
F-test	**	**	**	**
S. Em±	0.035	0.020	0.029	0.006
CD at (0.05)	0.108	0.063	0.089	0.019

**significant at p = 0.01 level of significance; NS-Non significant; Figures with same alphabet did not differ significantly

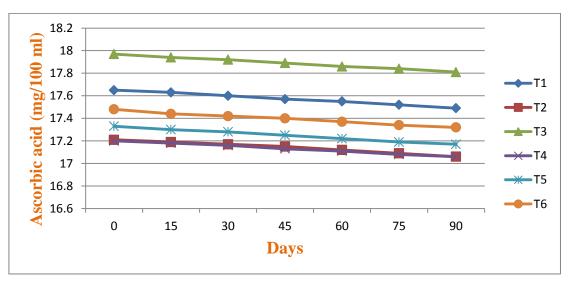


Fig. 1: Changes in ascorbic acid (mg/100 ml) of jamun and guava juice blends as influenced by different treatments during storage period

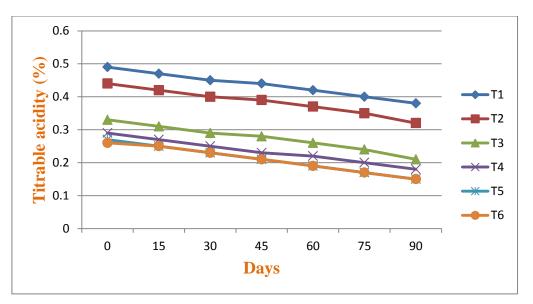


Fig. 2: Changes in titrable acidity (%) of jamun and guava juice blends as influenced by different treatments during storage period

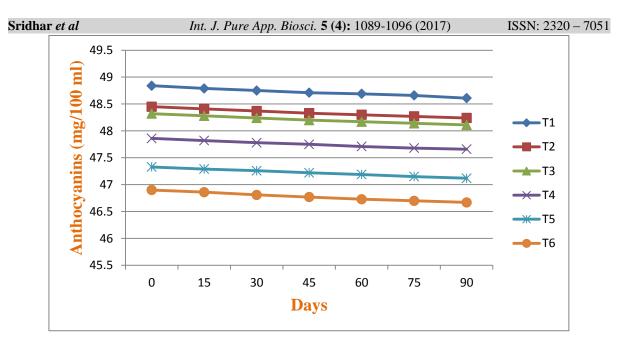


Fig. 3: Changes in anthocyanins (mg/100 ml) of jamun and guava juice blends as influenced by different treatments during storage period

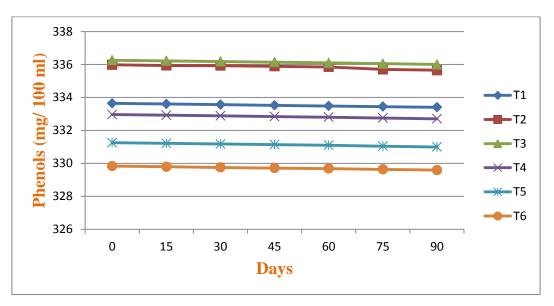


Fig. 4: Changes in phenols (mg/100 ml) of jamun and guava juice blends as influenced by different treatments during storage period

Acknowledgement

The authors express their deep sense of gratitude to Dr. R. Chandrasekhar, Associate Dean, College of Horticulture, Mojerla, Mahabubnagar for providing facilities for carrying out the research work.

REFERENCES

- Anonymous. Jamun production trends in India and world. Market updates fruits, (2005).
- Bray and Thorpe, W. V., Analysis of phenolic compounds of interest in metabolism. *Methods of Bio-chem. Ana.*,1: 27-52 (1954).
- Cruick, S, Durgid, J. P, Marimon, B. P. and Surain, R, H, A., Medical microbiology. The practice of medical microbiology. Churchil living stone, Edinberg, London and New York, 306 p. (1975).

Sridhar *et al*

- Dastur, J. F., Useful plants of India and Pakistan. D. B. Traporevala Sons, Bombay, 150 pp. (1952).
- Gajanana, K., Processing of aonla (Emblicaofficinalis) fruits. M.Sc. (Horti.) Thesis, University of Agricultural Sciences, GKVK, Bangalore, Karnataka, (2002).
- Ilamaran, M. and Amutha, S., Effect of total soluble solids and CO₂ pressure on physico-chemical and sensory qualities of carbonated banana and sapota beverages. *Journal of Food. Sci. and Tech.*,44(2): 178-182 (2007).
- Joshi, S. G., Medicinal plants. New Delhi: Oxford & IBH Publishing Co. (2001).
- Kirtikar, K. R. and Basu, B. D.,Indian Medicinal Plants.Mis Periodical Export, New Delhi, 2 (1975).
- Mapson, L. W., Vitamins in fruits, In: Hulme, Ac (Edition) the biochemistry of fruits and their products, Academic press, London, 1: 369-384 (1970).
- Nidhi, RakeshGehlot, Singh, R.and Rana, M. K., Changes in chemical composition of ready to serve bael guava blended beverage during storage. J. of Food Sci. and Tech., 45(4): 378-380 (2008).
- Panse, V. G. and Sukhatme, P. V., Statistical methods for agricultural workers. ICAR, New Delhi, 152-155 pp. (1985).

- 12. Peryam, D. R. and Pilgrim, J. F., Hedonic scale method for measuring food preference, (1957).
- Ranganna, S.,Hand book of analysis and quality control for fruit and vegetable products. Tata Mac Graw Hill publication co. Ltd., New Delhi, India, 2: (1986).
- Rhim, J. W., Kinetics of thermal degradation of anthocyanin pigment solutions driven from red flower cabbage. *Food. Sci. Biote.*, **11:** 361-364 (2002).
- Sarolia, D. K, and MukHarjee, S., Comparative efficacy of different preservation methods in keeping quality of lime (*Citrus auranyifolia*Swingle L.) juice during storage. *Haryana. J. of Horti. Sci.*, **31(3-4):** 185-188 (2002).
- 16. Sharma, P. C, Sharma, S. K. and LalKousal, B. B., Preparation and evaluation of some value added products from hill lemon fruits. *Ind. J. of Agri. Scie.*,**71**(11): 691-694 (2001).
- Tripathi, V. K, Lyndih, K. and Singh, S., Studies on blending of pineapple juice with different ratios of guava juice for preparation of RTS beverage. *Progr. Horti.*,24(1-2): 60 (1992).
- Upale, K. B., Studies on processing of jamun juice and its beverages. M.Sc. (Horti.) Thesis, Univ, Agri, Sci, Dharwad, (2005).